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In this study, the permeability of ordered fibrous media towards normal and parallel flow is deter-
mined analytically. In this approach, porous material is represented by a ‘‘unit cell” which is assumed
to be repeated throughout the media. Several fiber arrangements including: touching and non-touch-
ing arrays are considered. Modeling 1D touching fibers as a combination of channel-like conduits, a
compact relationship is proposed to predict permeability. Furthermore, employing an ‘‘integral tech-
nique” and assuming a parabolic velocity profile within the unit cells, analytical relationships are
developed for pressure drop and permeability of rectangular arrangements. The developed models
are successfully verified with existing experimental data collected by others for square arrangement
over a wide range of porosity. Due to the random nature of the porous micro structures, determina-
tion of exact permeability of real fibrous media is impossible. However, the analyses developed for
ordered unit cells enable one to predict the trends observed in experimental data. The effects of unit
cell aspect ratio and fibers diameter on the permeability are also investigated. It is noted that with an
increase in the aspect ratio the normal permeability decreases while, the parallel permeability
remains constant. It is also shown that the permeability of fibrous media is related to the diameter
of fibers squared.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Fibrous porous materials have applications in several engineer-
ing areas including: filtration and separation of particles, physio-
logical systems, composite fabrication, heat exchangers, thermal
insulations, and fuel cells [1–4]. Transport phenomena in porous
media have been the focus of numerous studies since 1940s which
indicates the importance of this topic. One of the most important
properties of porous structures is permeability. Permeability is a
measure of the ability of porous matrix to transport fluids. Predic-
tion of velocity field plays a key role in estimating permeability and
analyzing the flow behavior in porous media. This can be achieved
by using Darcy’s law which assumes a linear relationship between
volume-averaged superficial fluid velocity, U, and the pressure
gradient:

�rP ¼ l
K

U ð1Þ

where l is the fluid viscosity and K is the permeability of the med-
ium. Darcy’s relationship is empirical, convenient, and widely ac-
cepted. It can be shown that Darcy’s equation holds while fluid
flowing through pores is in creeping regime [5]. To use Darcy’s
equation; however, we need to know the permeability of the med-
ium beforehand. Permeability depends on several factors, including:
ll rights reserved.
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porosity, fibers size distribution, and arrangement; it is typically
found using empirical correlations for most applications.

Prediction of the permeability of fibrous media dates back to
experimental work of Sullivan in 1940s [6] and theoretical works
of Kuwabara [7], Hasimoto [8], Happel [9], and Sparrow and Loef-
fler [10] in 1950s. Kuwabara [7] predicted the permeability of flow
normal to randomly arranged fibers for materials with high poros-
ity. He solved the stream function and the vorticity transport equa-
tions around with limited boundary layer approach. Hasimoto [8]
and Sparrow and Loeffler [10] determined the permeability of nor-
mal and parallel flow to ordered arrangement of cylinders, respec-
tively. Happel [9] analytically solved the Stoke’s equation for
parallel and normal flow to a single cylinder with free surface mod-
el (limited boundary layer). He also proposed that the permeability
of random fibrous media is related to parallel and normal perme-
ability of 1D array of cylinders. Later, Sangani and Acrivos [11], per-
formed analytical and numerical studies of viscous permeability of
square and staggered arrays of cylinders for the entire range of
porosity, while their axes were perpendicular to the flow direction.
Their analytical models were accurate for lower and higher limits
of porosity. Sangani and Yao [12] reported numerical results for
the permeability of random 1D fibers towards normal and parallel
flows. Sahraoui and Kaviany [13] included inertial effects and
numerically determined the permeability of cylinders in normal
flow and proposed a correlation. Van der Westhuizen and Du
Plessis [14] using numerical simulations proposed a correlation
for prediction of normal permeability of 1D fibers. Analytical
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Nomenclature

A pore cross-sectional area (normal to flow), m2

d fiber diameter, m
Dh hydraulic diameter of the pore, m
f Fanning friction coefficient
Ip polar moment of inertia of pore cross-section, m4

I�p dimensionless polar moment of inertia of pore cross-
section, I�p ¼ Ip=A2

K permeability, m2

K* non-dimensional permeability, K� ¼ K=d2

L channel depth, m
P pressure, N/m2

Q volumetric flow rate, m3/s
S distance between adjacent fibers in square arrange-

ment, m
Sx distance between adjacent fibers in rectangular unit cell

in x-direction, m

Sy distance between adjacent fibers in rectangular unit cell
in y-direction, m

u normal velocity, m/s
us velocity at the border of unit cell, m/s
�U volume-averaged superficial velocity, m/s
w parallel velocity, m/s

Greek symbols
C perimeter of flow passages, m
e porosity
l viscosity, N s/m2

u solid fraction, u = 1 � e
u
0

non-dimensional parameter, u
0
= p/4u

Subscript
D-W Darcy–Weisbach
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prediction of the permeability of general triangular arrangement
was presented by Hellou et al. [15]. They proposed a correlation
for determination of permeability of periodic triangular arrange-
ments. Recently, Sobera and Kleijn [16] studied the permeability
of random 1D and 2D fibrous media both analytically and numer-
ically. Their analytical model was based on scale analysis and the
proposed relationship was a function of fibers distance and a
non-dimensional randomness number. A comparison of model of
[16] with numerical results showed that their model was accurate
in highly porous materials [16]. However, the difference in low
porosity was considerable. Tomadakis and Sotirchos [17] proposed
a model which enables the prediction of anisotropic permeability
through 1D, 2D, and 3D random fibrous beds. This model was pro-
posed for randomly overlapping fibers. Although model of [17]
were meant to cover all types of random fibrous media, in some
cases the errors between the model and experimental data were
considerable. A thorough comparison of [17] model with experi-
mental data, is available in [2]. Avellaneda and Torquato [18] using
conduction-based techniques, proposed an upper bound for the
permeability of generalized fibrous media. Tomadakis and Robert-
son [2] showed that this bound is violated by several data points
available in the literature. Using experimental data, Tomadakis
and Robertson [2] stated that the upper and lower bounds for fi-
brous media with random orientation of fibers were normal and
parallel permeability of 1D arrangements. Several experimental
studies have also been conducted for determination of the perme-
ability of fibrous media [19–25]. Good reviews of experimental
works are available in Jackson and James [26], Astrom et al. [27],
and Tomadakis and Robertson [2].

Porous media have potential applications in compact heat
exchangers and fuel cell technologies. Our literature review indi-
cates that less attention has been paid to determination of perme-
ability of ordered packed fibrous materials. More importantly, we
observed that: (1) majority of the existing correlations for perme-
ability are based on curve-fitting of experimental or numerical
data; (2) most of the analytical models found in the literature are
not general and fail to predict permeability over the entire range
of porosity.

In this study, the permeability of touching and non-touching or-
dered fibrous media towards normal and parallel flow is studied. A
compact relationship is presented that can be used for touching fi-
bers and also packed beds.

In addition, novel analytical models are developed using the
concept of unit cell and integral technique. Assuming a parabolic
velocity profile within the unit cells and integrating the continuity
and momentum equations, compact analytical relationships are
derived for pressure drop and permeability of considered patterns.
Using the proposed model, one only needs average fibers diameter
and the medium porosity to predict the permeability. More impor-
tantly, the present analysis does not require any tuning parame-
ters. Normal and parallel permeability of 1D fibrous media are
studied to establish bounds, as previously pointed out by Tomada-
kis and Robertson [2]. It is shown that the proposed normal flow
permeability of square unit cell predicts the trends observed in
experimental data; and serves as a lower bound for the permeabil-
ity of fibrous media. The proposed model is successfully validated
against experimental data collected from several sources over a
wide range of porosity, matrix materials, and fluids.

2. Model development

Due to the random nature of porous micro structures, determi-
nation of exact permeability of real fibrous media is highly unli-
kely. As a result, simplifying assumptions should be made to
model the geometry of the microstructure. Fibrous media can be
categorized into three forms [2]:

(1) One dimensional (1D): fibers are parallel to each other but,
randomly distributed in the volume.

(2) Two dimensional (2D): fibers are located in parallel planes in
which the fibers can have random orientation.

(3) Three dimensional (3D): fibers can have any orientations
and locations in the space.

Among the above three types, the 1D model is the most aniso-
tropic type and is considered in this study. Following the approach
used successfully in several applications such as spherical packed
beds [28] and in gas diffusion layer of fuel cells [29], and fibrous
media [7–11,30,31] a unit cell is considered to analyze the geome-
try of the fibrous media. The unit cell (or the basic cell) is the small-
est volume which can represent characteristics of the whole
microstructure. Porous media are assumed to be periodic and the
considered unit cells repeat throughout the material. In the follow-
ing sections several fiber arrangements including: touching and
non-touching arrays are considered. The flow is assumed to be
creeping, incompressible and steady state.

Determination of the exact velocity profile requires detail
knowledge of the geometry of the medium which is not feasible
in the case of porous media. Moreover, even with specified geom-
etry and boundary conditions, finding exact analytical solution is



a

A. Tamayol, M. Bahrami / International Journal of Heat and Mass Transfer 52 (2009) 2407–2414 2409
not guaranteed and is a difficult task for most cases. To overcome
this problem, an integral method is employed in this study. The
integral method provides a powerful technique for obtaining accu-
rate but approximate solutions to rather complex problems with
remarkable ease. The basic idea is that we assume a general shape
of the velocity profile. It must be noted that we are not interested
in the precise shape of velocity profile but rather need to know the
pressure drop over the basic cell to calculate permeability. This can
be accomplished by satisfying conservation of mass and momen-
tum in a lumped fashion across the unit cell. As a result, an approx-
imate parabolic velocity profile is considered which satisfies the
boundary conditions within the unit cell. The integral technique
has been applied successfully to several classical problems such
as moving plate and boundary layer [32]. Use this technique to
model porous media, however, is a novel approach. In the follow-
ing sections, a combination of integral technique and asymptotic
solution are undertaken to study the flow in a variety of fiber
arrangements.

3. Permeability of touching fibers

Two limits can be recognized for fibrous media:

(1) Touching cylinders, media can be envisioned as a packed
bed.

(2) Highly porous materials with porosities near 1.

Although packed fibrous beds have application in compact heat
exchangers, most of the proposed models and analytical solutions
existing in the literature fail to predict the permeability of these
materials [24].

Since no flow could pass perpendicular to touching fibers (see
figures in Table 1), normal permeability is zero. Fluid passing par-
allel to the axis of unidirectional fibers experiences a channel-like
flow; thus, the media is treated as a combination of parallel con-
stant cross-sectional conduits. Therefore, the permeability can be
related to pressure drop in these channel flows. In this approach,
the cross-sectional area and the perimeter of the channel are
Table 1
Touching parallel fibers parameters.

Porosity (e) Arrangement shape f Ref.[33] Dh KD–W/d2, Eq. (3)

0.094 6.503 0.103d1 0.00008

0.215 6.606 0.274d 0.00122

0.316 6.634 0.462d 0.00509

0.396 6.639 0.655d 0.01280

0.512 6.629 1.050d 0.04260

Normal flow permeability = 0 for these arrangements.
1 d is the fibers diameter.
required. Pressure drop can be calculated using Darcy–Weisbach
relation [32]:

dP
dz
� DP

L
¼ f

qU2

2e2Dh
ð2Þ

where Dh is the hydraulic diameter, L is the channel depth, f is the
Fanning friction factor, and e and U represent the porosity and the
volume-averaged superficial velocity, respectively. Using Eq. (1)
the permeability becomes:

KD�W ¼ f
2e2lDh

fqU
ð3Þ

Table 1 presents several touching fibers arrangements and the
calculated permeability using Eq. (3). Note that the Fanning friction
factor must be known to calculate permeability from Eq. (3).
Numerical values of the Fanning coefficients reported by Shah
and London [33] and the resulted permeabilities are also listed in
Table 1. It should be noted that all of these possible arrangements
cannot be considered as a unit cell. Fig. 1a–c shows how the trian-
gular, the rectangular, and the hexagonal arrangements can map a
porous medium; As a result, they are unit cells. However, the
octagonal arrangement in Table 1 does not represent, by itself,
the characteristics of the fibrous media since it must be combined
by the rectangular arrangement.

Selection of the characteristic length is an arbitrary choice and
will not affect the final solution. However, a more appropriate
length scale leads to more consistent results, especially when
random cross-sections are considered such as in porous media. A
b

c

d

Fig. 1. Triangular, square, and hexagonal unit cells and combination of octagonal
and square array of cylinders.



Fig. 2. Rectangular arrangement of cylinders and considered unit cell.
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circular duct is fully described with its diameter, thus the obvious
length scale is the diameter (or radius). For non-circular cross-sec-
tions, the selection is not as clear; many textbooks and researchers
have conventionally chosen the hydraulic diameter. Yovanovich
[34,35] introduced the square root of area (

ffiffiffi
A
p

) as a characteristic
length scale for heat conduction and convection problems. Bah-
rami et al. [36,37] through analysis showed that

ffiffiffi
A
p

appears in
the solution of fully-developed flow in non-circular ducts. They
also compared both Dh and

ffiffiffi
A
p

and observed that using
ffiffiffi
A
p

as
the characteristic length scale results in similar trends in Poiseuille
number for microchannels with a wide variety of cross-sections.
Therefore, in this study, the Fanning friction coefficient is calcu-
lated employing Bahrami et al. [36] model which considered

ffiffiffi
A
p

as the length scale. They proposed a general model that predicts
the pressure drop for arbitrary cross-sectional channels. In the
model of [36], pressure drop is related to geometrical parameters
of the cross-section:

DP
L
¼ 16p2lU

Ae
I�p; I�p ¼

Ip

A2 ð4Þ

where Ip and A are the polar moment of inertia and the area of the
passage cross-section, respectively. Using Darcy’s relationship and
model of [36], the non-dimensional permeability of periodic touch-
ing fibrous media can be found as:

K� ¼ K

d2 ¼
Ae

16p2I�p
ð5Þ

This relationship can be easily applied to any touching fibrous
arrangements including; triangular, rectangular, hexagonal, and
checker boarding. Table 2 compares the values calculated from
Eq. (5) and the experimental data reported by Sullivan [6] for air
flowing through staggered and square arrangements of copper
wires, respectively. The difference between the predicted values
by the proposed model and the experimental data is reasonably
within the context of porous media.

4. Normal permeability of square arrangement

Fig. 2 shows the rectangular arrangement of cylinders and the
velocity profile between these fibers. The unit cell is selected as
the space between parallel cylinders as shown in this figure. For
convenience and without losing generality, the unit cell is assumed
to be square, i.e., Sx = Sy = S. The same approach can be followed for
the rectangular unit cell. The porosity for this arrangement can be
determined from:

e ¼ 1� pd2

4S2 ð6Þ

The permeability is related to the total pressure drop through
the unit cell; see Eq. (1). Assuming creeping flow and neglecting
inertial terms, the x-momentum equation reduces to Stokes
equation:
Table 2
Parallel permeability of touching fibers.

Porosity (e) Unit cell K*, Eq. (5) K*, data [6] Difference (%)

0.094 0.000088 0.000083 5.6

0.215 0.00147 0.00121 17.6
@2u
@y2 ¼

1
l

dP
dx

ð7Þ

Due to symmetry, the y-component of velocity on the unit cell
border line is zero. The x-component of velocity is not necessarily
zero; however, for very packed materials the border velocity is
negligible. At first, no border velocity assumption is made to sim-
plify the analysis. Later, the effect of the border velocity on porosity
will be investigated. Solving Eq. (7) and assuming no-slip condition
leads to a parabolic velocity profile:

u ¼ 1
2l

dP
dx

d2 � y2
� �

ð8Þ

where d is the half thickness of the unit cell in y-direction. For the
unit cell of the rectangular arrangement, Fig. 2b, d is:

d ¼
S
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
� x2

s
; 0 6 x 6

d
2

S
2
;

d
2
6 x 6

S
2

8>>><
>>>:

ð9Þ

Total pressure drop of the unit cell is calculated employing an
integral technique solution. Substituting velocity profile of Eq. (8)
into continuity equation and integrating the result, the unit cell
pressure drop is calculated:

DPunitcell ¼ 3lQ
Z S=2

0

dx

d3 ð10Þ

where Q ¼ US is the total volumetric flow rate passing through the
unit cell. The pressure drop in the basic cell is calculated as:

DPunitcell ¼ 6lQ
2d

ðS2 � d2ÞS
þ

3d2S tan�1 dffiffiffiffiffiffiffiffiffiffi
S2�d2
p
� �

þ p
2

� �
ðS2 � d2Þ

5
2

8>><
>>:

9>>=
>>;

þ 12lQ

S3 ðS� dÞ ð11Þ

Using the total pressure drop over the length of the unit cell,
one can rewrite Darcy’s relation as:

DPunitcell

S
¼ lQ

KS
ð12Þ



Fig. 3. Comparison of present models with experimental data.

Fig. 4. Comparison between proposed model, experimental data, and other existing

A. Tamayol, M. Bahrami / International Journal of Heat and Mass Transfer 52 (2009) 2407–2414 2411
Combining Eqs. (11) and (12), one can observe that the perme-
ability is only a function of the geometrical parameters of the med-
ia, which is in line with the creeping flow assumption. Introducing
solid fraction as / = 1 � e, the permeability of square arrangement
becomes:

K� ¼
12

ffiffiffiffiffi
/0

p
�1

	 

/0

ffiffiffiffiffi
/0

p þ18þ12 /0 �1ð Þffiffiffiffiffi
/0

p
1�/0ð Þ2

þ
18

ffiffiffiffiffi
/0

p
tan�1 1ffiffiffiffiffiffiffiffi

/0�1
p
� �

þ p
2

� �
ð/0 �1Þ

5
2

8>><
>>:

9>>=
>>;
�1

ð13Þ

where K* = K/d2 and /0 = p/4/. Eq. (13) is based on the assumption
of no border velocity, i.e., ub = 0. In general, the border velocity is
not zero. It is zero on the edge of the cylinders (no-slip condition)
and reaches its maximum value at the half distance between cylin-
ders in the x-direction. It is also expected that the maximum border
velocity be a function of the porosity [21], i.e., as the porosity in-
creases the maximum border velocity increases. For lower porosi-
ties the border velocity is very small and for highly porous limits,
approaches to the Darcy velocity. In this study, the border velocity
increases linearly from the edge of the fibers (ub = 0) to its peak at
the center of the unit cell:

ub ¼ UgðeÞ 2x
S� d

;
d
2
6 x 6

S
2

ð14Þ

In Eq. (14) the maximum border velocity is related to porosity
through g(e) which is assumed to be a linear function of porosity;
with g(0.215) = 0 for touching fibers and g(1) = 1 for high porosity
limits:

gðeÞ ¼ 1:274e� 0:274 ð15Þ

Using Eq. (14), our model can be extended to account for the bor-
der velocity. Since the no-slip boundary condition holds for the fibers
surface, the velocity profile in Eq. (8) is valid for 0 6 x 6 d/2 range.
But, for d/2 6 x 6 s/2, the velocity profile becomes:

u ¼ 1
2l

dP
dx

S2

4
� y2

 !
þ gðeÞ 2x

S� d
U;

d
2
6 x 6

S
2

ð16Þ

Using continuity equation and the definition of volumetric flow
rate, one can calculate pressure gradient:

dP
dx
¼ 12lQ

S3 ðS� dÞ 1� gðeÞ 2x
S� d

� �
;

d
2
6 x 6

S
2

ð17Þ

The pressure drop in the basic cell is calculated as:

DPunitcell ¼ 6lQ
2d

ðS2 � d2ÞS
þ

3d2S tan�1 dffiffiffiffiffiffiffiffiffiffi
S2�d2
p
� �

þ p
2

� �

S2 � d2
5
2

� �
8>><
>>:

9>>=
>>;

þ 12lQ

S3 ðS� dÞ 2� gðeÞ
2

� �
ð18Þ

Following the same approach, the permeability of the square
arrangement can be determined as:

K� ¼ 12ð
ffiffiffiffi
p
p 0 � 1Þ
/0

ffiffiffiffi
/
p 0

2� gðeÞ
2

� �
þ 18þ 12ð/0 � 1Þffiffiffiffi

/
p 0ð1� /0Þ2

(

þ
18

ffiffiffiffi
/
p 0 tan�1 1ffiffiffi

/
p 0

�1

� �� �
ð/0 � 1Þ

5
2

)�1

ð19Þ

In Fig. 3 predicted results from the present models, Eqs. (13)
and (19) are compared with experimental data collected from sev-
eral sources. The ±15% bounds of the model are also shown in the
plot, to better demonstrate the agreement between the data and
the model. The experiments were conducted using different fluids
including: air, water, oil, and glycerol with a variety of porous
materials such as metallic rods, glass wool, and carbon. As ex-
pected, the difference due to neglecting the border velocity is only
considerable in highly porous materials. More importantly, the
proposed model, Eq. (19), accurately predicts the normal perme-
ability of square arrangement of fibers over the entire range of
porosity.

A comparison between Eq. (19), experimental data, and other
existing models is also presented in Fig. 4. Although most of the
models predict similar trends for porosities near unity, they fail
to predict the data for low porosities. The proposed model, on
the other hand, is the only analytical-based model that captures
the trends of experimental data over the entire range of porosity;
and does not include any unknown constants.

According to Tomadakis and Robertson [2], values for flow nor-
mal and parallel to 1D fiber arrangement present the lower and
upper bounds for the permeability of fibrous media. Sobera and
models.



Fig. 6. Comparison of present model for parallel permeability of square arrange-
ment with experimental data of [6] and [23] and analytical model of Happel [9].
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Kleijn [16] also showed that among all possible 1D arrangements,
repeating pattern of Fig. 2 has the minimum permeability. There-
fore, Eq. (19) can serve as a lower bound for the permeability of
random fibrous media.

5. Parallel permeability of square arrangement

For this arrangement, the selected unit cell is the space between
parallel cylinders as shown in Fig. 5. The fluid flows perpendicular
to paper. Following the same approach discussed in the previous
section, a parabolic velocity profile is assumed:

w ¼ 1
2l

dP
dz

d2 � y2� �
; 0 6 x 6

d
2

ð20Þ

w ¼ 1
2l

dP
dz

S
2

� �2

þ S� d
2

� �2

� x� S
2

� �2

� y2

 !
;

d
2
6 x 6

S
2

where w is the velocity parallel to fibers in the z-direction, and d is
defined by Eq. (9). Using the continuity equation, one can calculate
the volumetric flow rate through the unit cell as:

Q ¼
Z Z
Aunitcell

wdydx ð21Þ

which can be evaluated as:

Q ¼ 1
6l

dP
dz

S2 þ 3d2
	 
 Sd

2
� Sd3

2
� 3p

32
4S2 þ d2
	 


þ SðS� dÞ3

2
þ S4

2

" #

ð22Þ

Using Darcy’s relationship and substituting for Q from the
above, one can find the parallel permeability:

K� ¼ p
24/

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

4/
� 1

r� �3

þ 2

" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/

9p
� p

8
þ /

8

� �s( )
1� /

2
ð23Þ

The present model, Eq. (23), is compared with analytical model
of Happel [9], numerical results of Sangani and Yao [12], and
experimental data reported by Sullivan [6] and Skartsis and Kardos
[23] for flow parallel to square arrangements of fibers, in Fig. 6. The
analytical model of [9] is accurate for high porosities [5]. This fig-
ure indicates that the proposed model shows a better agreement
with experimental data in low porosities.

6. Effects of unit cell aspect ratio

After successfully validating the proposed model, we can now
use it to investigate the effect of major parameters. Effects of
d

S

Sx

y

Flow

y

x

Aunit cell

Fig. 5. Parallel flow through rectangular unit cell.
porosity have already been discussed in the previous sections.
Eqs. (19) and (23) indicate that permeability is directly related to
fibers diameter squared for square arrangement.

Although Eqs. (19) and (23) are presented for square arrange-
ment, the same analysis can be followed to study the effects of unit
cell aspect ratio, Sx/Sy, variation on the non-dimensional perme-
ability of normal flow through rectangular fibers arrangement. In
Fig. 7a the non-dimensional permeability, K*, is plotted versus unit
cell aspect ratio for normal and parallel flow through rectangular
cell. Porosity and fibers diameter are kept constant while aspect ra-
tio is varied. The range of aspect ratio is determined by the non-
overlapping constraint for fibers, i.e., Sx, Sy P d. For example, for
e = 0.5 the range of unit cell aspect ratio will be 0.636 6
Sx/Sy 6 1.572.

Fig. 7a shows that normal permeability decreases as unit cell as-
pect ratio is increased. This is a direct result of reduction of the dis-
tance between adjacent fibers normal to the flow direction. For
relatively low porosities the variation of permeability is consider-
able; however, for highly porous materials this variation is rela-
tively small.

The non-dimensional permeability is plotted against unit cell
aspect ratio in Fig. 7b for parallel flow in rectangular cell. The
changes of parallel permeability due to the variation of aspect ratio
are not as significant as the values of normal flow. It should be
noted that 1D fibers parallel to the flow can be treated as capillar-
ies with slip velocity boundary condition; therefore, the permeabil-
ity in this case is related to the cross-section of the pores. Since the
area of the unit cell is not changing while porosity is kept constant,
the parallel permeability is not considerably affected by the varia-
tion of basic cell aspect ratio.

7. Summary and conclusions

The permeability of ordered fibrous media towards normal and
parallel flow is analyzed. In this study, porous material is repre-
sented by a unit cell which is assumed to be repeated throughout
the media. Several fiber arrangements including: touching and
non-touching arrays are considered. Modeling parallel touching fi-
bers as a combination of channel-like passages, a compact relation-
ship is proposed for prediction of the permeability. Analytical
models are also developed by using the concept of unit cell and



Fig. 7. Non-dimensional permeability versus unit cell aspect ratio for (a) normal,
(b) parallel flow through square arrangement.
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introducing an integral technique solution. Assuming a parabolic
velocity profile within the unit cells, analytical relationships are
developed for pressure drop and permeability of considered pat-
terns. The proposed model only requires the fibers diameter and
the medium porosity, with no constant or parameter, to predict
the permeability of fibrous media. The developed models have
been successfully compared with experimental data collected from
different sources as well as existing models in the literature for
square arrangement over a wide range of porosity. It is also shown
that the proposed normal flow permeability of square unit cell
serves as a lower bound for the permeability of fibrous media.

A parametric study was conducted and highlights of the analy-
sis were:

� The permeability is a function of geometrical parameters such
as: porosity, fiber diameter and unit cell aspect ratio in case of
rectangular fibers arrangement.

� Normal and parallel permeability are directly related to the fiber
diameter squared.
The present analysis provides an in-depth knowledge on the ef-
fects of geometrical and thermophysical parameters involved on
the permeability of fibrous media. This information can be used
as guidelines and criteria to design, select, and optimize engineer-
ing systems that include porous media.
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